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SIMMARY

Williems type modal solutions of the elementary and Timoshenko beam
equations are presented for the transient response of several uniform
beams to & general applled load. Example computations are shown for a
free~-free beam subject to various concentrated loads at its center. The
discussion includes factors influencing the convergence of modal solii~-
tions and factors to be considered in a choice of beam theory. Results
obtalned by two numerical procedures, the traveling-wave method and
Houbolt's method, are also presented and discussed.

INTRODUCTION

The problem of obtaining the response of elastic structures to
rapidly applied loading is of continulng concern to the aircraft indus-
try inasmuch as aircraft structures must withstand blasts, landing
impeacts, and a variety of other transient loads. In order to study the
verious factors involved 1n this problem, it is desirable to consider
simplified structures for which thorough studies are possible. Among
the simplest examples of continuous elastic structures are uniform beams.
Consequently, beams have been the subject of a considerable number of
transient response investigations, and a variety of solutions of partic-
ular beam problems are scattered throughout the existlng literature.
(See, fgr example, refs. 1 to 7. For an extensive bibliography, see
ref. T.

It is the purpose of the present paper to provide a relatively com-
plete source of useful modal solutions and to discuss the factors influ-
enclng the convergence of modal solutions and factors involved in the
choice of the proper beam theory to be uged in an analysis. To this end,
a consistent presentation is made of Williams type modal solutions for
the response to a completely general translent load of three pertinent
uniform beams (a free-free beam with a concentrated mass as its center,
a cantilever beam, and a simply supported beam). (Some duplication of
the exilsting literature is included for completeness.) Solutions, based
on both the elementary and Timoshenko beam theories, are obtained by &
process which can be readily extended to the solution of problems with
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time-~dependent boundery conditions. The application of the method is
illustrated for the case of the free-free beam with a concentrated mass,
and results for all the beams are sumsrized in tables I and II. In
addition, some typlcal computed results are shown for a free-free beam
gubJected to various concentrated loadings.

Another purpose of the present paper is & critical discussion of
two numericel procedures, the traveling-wave method (ref. 6) and Houbolt's
method (ref. 8). The procedures are briefly described and computations
made with both methods are compared with the modal results.

SYMBOLS
Ag effective shear-carrylng area of cross section
c arbltrary constant
cy propagetion velocity of bending discontinuities, El§
mr
AgG
Co propagetion veloclty of shear dlscontinuities, -
E Young's modulus of elasticity
£ applied concentrated load )
- 2
£ dimensionless applied concentrated load, %%—
G shear modulus of elasticity
I moment of inertia of cross section
1,3 integers
k dimensionless frequency parameter, w12 5&
Kot dimensionless rotery inertie paremeter, x/1
kg dimensionless transverse shear parameter, % Kla
8

|2 length of beam (half-length in case of free-free beam)
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M bending moment (see fig. 1)

M dimensionless bending moment, Mi/EI

M dimensionless static bending moment

msy generalized mass

m mass per unlt length

e concentrated mass

ﬁc ratlio of the concentrated mass to total mass of the beam,
mc/ml

Py generalized force

q applied distributed load (see f£ig. 1)

a dlmensionless applied distributed load, qEB/EI

r crogs-sectional radius of gyration

t time

v transverse shear force (see fig. 1)

v dimensionless transverse shear force, Vlz/EI

ﬁs dimensionless static transverse shear force

X coordinete elong the beam

y deflection (see fig. 1)

¥ dimensionless deflection, y/1

§i dimensionless translational component of ith natural mode

Vs dimensionless static deflection

;,'rr dimensionless rigid-body translation

% = kiH- s + i) + (s® - ) + fi%;j
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By = ky % (ksz + lez) + J(Fsa - kR12)2 + iiE

@1? + ki%kg®

Y, = '

i

: Bi2 - k12k52

. / o
8(e) Dirsc delta function ka(g) =0 for & # 0; f 5(e)ae =1

-00
9, dummy variable of integration
Bi
sin By - EI sinh ey
Ay = 1
cos + — cosh
Py + 5 o

3 dimenslonless space coordinate, x/1

T dimensionless time, L B
12t

¢i ith generalized coordinate
¥ rotation of beam cross section
vy rotational component of ith natural mode
ws static rotation of beam cross section
w circular frequency of natural vibration
7(7) step function (](T) =0 for 7<0; (1) =1 for 72 d)
Matrix notation: .
[ ] rectangular matrix . )
L J row matrix

I l column metrix

[ J diagonal matrilx
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Primes and Roman numeral superscripts are used to denote partial dif-
ferentiation with respect to &. Dots denote partial differentiation
with respect to .

WILLIAMS TYPE MODAL SOLUTIONS

In normel-mode solutions for the response of beams to transient
loads, the response is expanded in terms of a serles of normal modes of
the beam. The coefficients of the expansion (the generalized coordinates)
are determined from the governing differential equations and the boundary
and initial conditions. Williams type modal solutions (ref. 2) differ
from ordinary normel-mode solutions by virtue of the isolation of that
portion of the response which may be obtained in closed form by a process
of direct integration - the so-called "static" portion of the response.
Only the remaining "dynemic" portion of the response is expanded in
series form.

The advantage of the Williems method over ordinary modal solutions
is its abllity to yield, for meny loading conditions, a more accurate
result with the same number of terms in the series. (See, for example,
refs. 4 and 5.) It is particularly advantageous where the response func-
tion is discontinuocus. (An example of this is the determination of the
shear due to a concentrated load.) The discontinuity is contained
exactly in the separated static portion of the response and the seriles
is only required to reproduce a continuocus remasinder.

In the Williams method, the isolated portion of the response 1is
termed static becasuse significant parts of the inertia forces are ignored
in its determination. In general, however, it is time dependent by virtue
of the time dependence of the applied locad and of the nonhomogeneous time-
dependent boundary conditions if such are lmposed. In the case of beams
with a fixed point of reference, such as cantilever or simply supported
beams, all inertla forces are ignored in the determinstion of this static
part of the response; for beams with rigid-body freedoms, however, the
inertia forces due to the rigld-body motion must be taken into account.

One method of obtelning Williems type modal solutions is illustrated
herein for both the elementary and Timoshenko beam theories.

Elementary Beam Theory
Basic equations.- The motion of a beam sublected to an spplied loed

of intensity ql(x,t) i1s usually taken to be governed by the Bernoulli-
Euler equation
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32 __dFy
EI +m =q (1)
&= ox° 3t

where x 1s the coordinate along the beam, +t is time, y(x,t) is the
deflection (see fig. 1), EI(x) is the bending stiffness of the beam,

and m(x) is its mass per unit length. The internal bending moment M(x,t)
and the shear force V(x,t) at any cross section (see fig. 1) are given by

Py
M=-EI-a-x—2 (2)
and
_ 3 o
V-5 B3 (3)
respectively.

For & uniform beam, these equations may be written in the dimension-
less forms

FU+¥-a (&)
B =" (5)
V= (6)
where
y(e,m) =%

i(g,m) = 22

- 2
W(e,m) = I
- 15
Q(EJT) = L

EL
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and 1 1s the length of the beam or half-length in the case of a free-
free beam. The primes denote partial differentiation with respect to

£ = % and dots denote partial differentiation with respect to T = J%%%;-
1

Symmetrical free-free beam with concentrated mass.- For symmetrical
motion of & uniform beam having free ends et &£ =1 and ¢ = -1, atten-
tion is restricted to the portion O € & €1 with boundary conditions
stated in the form

?l(OJT) =0 (73)
g (0,T) =0 ()
¥ (1,7) =0 (Te)
yr(1,7) =0 (74)
If, in addition, the free-free beam has & concentrated mass 2m, located

at the center & = 0, the influence of this mass may be introduced into

the problem by changing the boundary condition, equation (o), to
" (0,7) + m, ¥(0,T) = 0 where @, = my/ml. On the other hand, the bound~

ary conditions, equations (7), may be left unchanged and the differential
equation (eq. (4)) altered to

7+ [+ 8, 802)]¥ =3 (8)

where &(&¢) is the Dirac delta function. In the solution that follows,
the latter alternative is chosen.

The beam 1s assumed to be inltially at rest and undeflected; that 1s,

7(¢,0) = ¥(¢,0) = 0 (9)

Then the response to & general symmetrical load d(t,T) may be obtalned
in the Williems form by the following procedure.

The solution 1is assumed in the form
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o

F(E,m) = Fplr) + 5,(8,7) +Z B, (1) F1(t) (10)
1=0

The quantity ir is the rigid-body translation of the free-free beam.
It is determined to satisfy the differentlal equation -

1
- ) = 1 -
Tolr) = i fo ae,ma (12)

and the initial conditions
5.(0) = §.(0) =0 (12)
The quentity is(g,T) is the static deflection determined to satisfy
- IV - - L
vy, (&,m) = q(6,7) - |1+ m, 8(8)| ¥, (1) (13)

and the cantilever boundsry conditions

~
yB(O)T) =0
is’(O,T) =0

( (14)
is"(l,T) =0
58"'(1,T) = o;

Note that, by virtue of the definition of ¥,., ¥, also satisfies the

boundery condition ¥ ™ (0,7) = 0. Finally, the shapes ¥;(8) (where

1=0,1,2, .. .) are the natural vibration modes of the beam satisfying

7,7 = (1w B 800|127, (35)
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and the boundary conditions

; (16)

where the dlmensioniess frequency coefficients ky (where
1=0,1,2, ...) are defined by k; =mi7,2‘/%. Further, it can be
shown that the modes ﬁi(g) satlefy the orthogonality condition

1
fo [1 + m, 8(5)]5;1(5) Fyedag =0 (1 £43) (D)

Note that, by virtue of the srbitrary selection of a datum plane for §s,

the dynemic portion of the response, in general, stlll contelns & rilgid-
body component (i = O). As defined, the total deflection F(E,t) satis-
fies the boundsry conditions (eqs. (7)). There remains the problem of
determining the coefficients ¢i(T) so that the differential equation

(eq. (8)) and initial conditions (egs. {9)), are satisfied.

If expression (10) is substituted into differential equation (8) and
equations (13) and (15) are taken into account, the differential equetion
is reduced to

z [iz%i(T) + k12¢i(—r)]§ri(g) = ¥, (&,7) (18)
i=0

Multiplying equation (18) by [1 + M@, s(g)] y;(¢) and integrating with

respect to & froam O to 1 yields, in view of equation (17), the
followling result:

81(7) + ki2¢i(T) ="Pljﬁ§-1-) (1=0,1,2...) (19)
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where

m = Ll [1 + o, 6(&)]&12&)&&

1 — :
Py (1) = fo [1+ &, 8(8)]74(8) F,(e,ma8

Similarly, substitution of expression (10) into the initial conditions
(eq. (9)) and teking into account equations (12) lead to the following

conditions:

~
¢1(0) =_?%1;(._0_)' (i =0, 1, 2, . . -)

. ( (20)
¢i(o) =‘2‘:'L(i)' (i =0,1,2, .. .)

= J

A simple formuls for the generalized-mess Iintegrel my for
i=1, 2, . .. has been presented in reference 9 for uniform beams

having any of the usual end conditions (free, pinned, or clamped) but
wlithout concentrated masses. In terme of the dimensionless quantities
defined herein, the extension of thils formula to beams with a concentrated

mess M, at £ =0 1s

my = fol 2+ 5, 8(e)] 7,5e)ae

v

= & fi 7,°(0) + oz i, %9,2(1) - 25" Q) F (1) + &1"2(1)]
- i
(1t =1,2,...) (a1)

For the present case where the end (¢ = 1) is free, equations (21) reduce
to

my = 111[150 5712(0) + §i2(l)] (1=21,2, ...) (228)

The rigid-body generalized mass (1 = 0) is seen to be
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m = (1 + ic)ioz (220)

Some reduction of the generelized-load Integral Pi(T) mey also be
accomplished in generel terms for 1 =1, 2, . . . . The quantity

[l + @, 5(&)]3'&(&) may be replaced by éz iriIV(ﬁ) (eq. (15)); then,

successive integrations by parts and application of the boundary condi-
tions (egs. (14) and (16)) reduce the integral to

1
p, (r) =ég fo Fo(e,m) File)dE  (1=1,2,...)

Substituting from equation (13) and recalling that, in natural vibration,
the inertia loads on & free-free beam are self-equilibrating yleld,
finally, the generalized load

1
Pi(T) = Eig ‘/; ﬁ(E,T) ii(g)dg (i =1, 2, .. .) (233)

On the other hand, for 1 = 0, the quantity Py(T) 1is most simply
expressed as

1
Po(T) = ¥y fo yg(&,7)dg (23b)

It might be noted here that, in the usual method of normal modes, the
expresslons for generalized force corresponding to equations (23a) do
not have the factor l/kiz. This 1s one manifestation of the more rapid

convergence of the Williems method.

The problem now requires direct integration of equations (11) and
(13) for the deflections if and is, solution of equastions (19) for

the generallzed coordinates ¢i’ and solution of equation (15) for the
natural modes of vibration ii, with each function satlsfying the desig-

nated boundary or initiel conditions. Direct integration of equation (11)
with the initial conditions (egs. (12)) taken into account ylelds

or) = e fo ' fo ' fo " al,mag(an’® (24)
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Substituting equation (11) into equation (13) and integrating four times,
taking into account the boundery conditions on ¥y, (egs. (1k4)), ylelds

the following result:

e = [0 P aemen” 1+mc<€2i %5-+-%§)fola<g,7)ag

(25)

The solution of equation (19), satisfying also equations (20), is readily
obtained by means of the Laplace transform. The result is

g (1) =-P,jl'1iT) +oL

T Py (6)sin ki(T -8)a (1=0,1,2, ...) (26)
0

Finally, the natural-mode shapes ii and the corresponding frequency

equation are derived in reference 10. These results, including the
natural-mode shapes and the frequency equation, are summarized for easy
reference in teble I(a).

Relations are also given in table I(a) for the moment M(t,r) and
shear V(g,T) obtained by substitution of the deflection response into
equations (5) and (6). (It is also possible to obtain these quantities
by integreating the total load as

However, some care must be exerclsed in using these formulas when the
load function is discontinuocus in time or has discontinuous first deriv-
atives with respect to time.)

Other configurations.- The response of a uniform free-free beamn
wlthout a concentrated mass is glven by the results in table I(a) with

ﬁc = 0. The response of a cantilever beam may alsoc be obtained from the

response of the free-free beam with the concentrated mass by a limiting
process in which the mass ﬁc approaches infinity. Results for the

cantilever beam are summarized in table I(b). For completeness, the
Williams solution for & simply supported beam 1s shown in table I(c).
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Time-dependent boundary conditions.- It is worthwhille to point out
that the method outlined in this report is directly appllcable to the
solution of problems with nonhomogenecus time-dependent boundary condi-
tions. Such problems require the separation of the solution into two
parts, one satisfying the time-dependent boundary conditions and the
other capable of belng expanded in terms of time-independent functions
such as the natural modes of the beam. (See, for example, ref. 11.) In
the Williems method, this separation is already made and time-dependent
boundery displacements or forces are simply lntroduced into the boundary
conditlons imposed on §s or into the equations for riglid-body
displacements.

Consider, for exsmple, & uniform beam flxed at one end and given a
varisble displacement at the other, such that its differential equation
and boundary conditions are

iIV(g »T) + ?(g:’r) = ﬁ(& »T)

i’(O,T) =¥ (O:T) 37"(1,1’) =0

y(1,7) = &(r)

The solution would be assumed in the form of equation (10) but with
¥.. = 0 since there 1s no rigid-body translational freedom In this case.
Tﬁe statlic portion of the solution would be determined to satlsfy

YSIV(§ »T) = ae,)

and

¥5(0,7) = §,'(0,7) = §,"(1,7) =0

is(l)'r) = g(7)

while the expansion functions §i (where 1 =1, 2, . . .) are the solu-
tions of

7. (E) = k.55, (8)



1k ’ NACA TN Lohh

and

ii(o) = ii'(o) = ?i"(l) = §i(l) =0

(the natural modes of a clemped~pinned beam). In order to complete the
solution, the generalized coordinates corresponding to a beam initially
at rest and unstressed would have the usual form

-
¢i(T) =__P;i7) + E% . P, (0)sin ki(T - 6)ae (1=2,2,...)
where
<)1l(>(
Py(T) = =5 a(e,r) Fi(e)ag
1 k12 0 i

1
my = fo 7,20 ) i-é F,1(1) F,m(2)

Similarly, a uniform free-free beam with a specified tlme-dependent
displacement g(t) at its center moves according to

7, 7) + §e,m) = de,T)
i(O;T) = S(T)

y'(0,7) =§"(1,7) = F"(1,7) =0
In this case
F.(7) = &(r)
and is(g,T) is determined from

7.5V (e,7) = @e,m) - (1)

and

yS(O;T) = ?s'(O:T) = ys"(l;T) = is"'(l,T) =0
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while the natural modes ¥; (where 1 = i, 2, . . .) are the modes of

& cantilever beam. Or if, instead of F(0,T) = g(7), there is glven the
force boundary condition F"(0,T) = h(T), the rigid-body motion is deter-
mined from

. i
yo(T) = j; a(t,m)as - n(7)

The static solution §; 1is taken to satisfy

F.(e,m) = e,m) - Fo(n)

S-rs(OJT) = is'(o,'r) = i's"(ls'r) = 5’5"‘(1}1-) =0

and the modes ii (where i = c, 1, 2, . .) are the natural modes of
a free-free beam. In-this case, it can be shown by integrating the dif-
ferential equation governing ¥, that Fg™(0,7) = h(T).

Thus, the treatment of problems with time-dependent boundary condi-
tions involves no speciel separste procedure when the Williams method is
used.

Timoshenko's Beam Theory

Basic equations.- In the elementary beam theory, deflection ocecurs
only by virtue of the rotation of the beam elements and only thelr trans-
lational inertia is taken into account. The Timoshenko beam theory
(ref. 9) permits additional deflection due to transverse shear and accounts
also for the rotational inertias of the beam elements. According to this
theory, the motion of a beam subjected to an spplied load of intensity

a(x,t) is governed by the equations (see, for example, ref. 6):
d .. dy 2 Py
— EI —= + A_G|= - - =0
ox ox i (bx W) = 2
[ (27)
d oy >
=—|AG(— - - = =
Bx[js (bx )] " SSE 4 3

where V is the rotation of the cross section (see fig. 1),

r 1is the

redius of gyration of the cross section, and A G 1s the stlffness in
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transverse shear. The effectlive shear-carrying area A  differs from

the totel area because the shear stress is not constant over the cross
section. The bending moment M and transverse shear force V are
glven by

- g ¥
M= EIax _ (28)

v = ASG@% - w) (29)

For uniform beems, these equations mey be written in the dimension-
less forms

Du
R WO B Y
S
( (30)
_L 1 T kod = _-
ks2(y V' -y =-1 )
o=y (31) !
=L - (32)
kg

[
freedom of the heam to deflect through transverse shearing action and the
rotary lnertia coefficlent kpy = % is a measure of the rotationsl )
inertias per unit length.

where the transverse shear coeffilcient ks = l"fla iz a measure of the
8

Note that the functions § and VY are both necessary for adequate
definition of the deformation of the beam. Since these go hand-in-hend,
the terms “"solution" and "response," as used herein, will apply to these
functions collectively and the single notation F{(&,T);¥(£,7) will be
used to speclfy both functions. o

Symmetrical free-free beam with concentrated mass.- For the applica-
tion of Timoshenko's theory to the symmetricel motion of & uniform free-
free beam with e mass 2R, at the center E& = 0, attention will again be
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restricted to the portion 0O <E € 1. As in the case of the elementary
theory, the effect of the mass may be introduced into the differential

- equations 1f desired. However, for illustrative purposes, the differ-
ential equations (30) will be left unchanged and the mass will be intro-
duced in the boundery conditions; the boundary conditions then become

-

'4’(0)7) =0
11{'(1,1') =0
.
¥ (1,7) -¥(1,T) =0 (33)

. ¥#o,7)

-/

—12 5;' (O:T) =
kS

Note that the location of the concentrated mess at £ = 0O and the
restriction to symmetrical motion exclude any effect of the rotational
inertia of the concentrated mess.

The beam 1s assumed Initially et rest and undeflected; hence,

a

5(¢ ,0)
: (¢ ,0)
¥(&,0)
¥ (¢ ,0)

r (34)

o]
-0
0
0

-

With the problem thus completely defined by the differential equatlons
(egs. 30), the boundary conditions (eqs. (33)), and the initisl conditions
(eqs. (34)), the solution may be obtained as follows.

Assume that
F(e,m) = F.01) + F,(6,7) + ) By(v) Fy(8)
i |
o (35)
¥(E,T) = ¥ (E,7) +Z B, () ¥3(e)
i=0
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where ir(T) is again the rigid-body translation of the beam,
F5(&,7);¥,(E,7) is the static solution, and F1(e)3¥1(e) (where

i=0,1,2,...) are the natural vibration modes. The rigid-body
translation of the beam yf ls governed again by the differential

equation

1
3 = __JL__.\/G ] a
and the initial conditions

7.(0) = ¥.(0) = 0 (37)

The static solution 1ls determined to satisfy

v" *+ Z5(Fe’ - ¥) = O
g (38)

1 /= v = -
= O

and the cantilever boundsry conditions

0]

¥5(0,7)

0

*5(057)

( (39)
wst(l:T) =0

¥ (1,7) = v (1,7) =0

P

The mode shapes §i(g);¢i(g) satisfy

¥ - ) iy “kgr ¥y = 0
) . (40)

éz(yi' - V) + kT =0
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the boundary conditions

1?1(0) =0

(1) =0
s (k1)
F0(1) - (1) =0

1l = _ =
E;E §11(0) = fi ks Yi(ok
and the orthogonality relation

1
fo [+ 8, )] F5(8) 75(6) + 1. ¥ (8) (&) b as = 0 (1 # 3)
(42)

The derivation of this orthogonalilty relation is shown in the appendix
along with the solutions to equations (40) and (41).

Substituting equations (35) into the differential equations (egs. (30))
and utilizing equations (38) and (40) reduce the differential equations to

i‘ (¢i + k12¢1)5’1 = ¥ (43e)
1=0
5 o
i=0

Multiplying equation (43m) by [; + @, 8(§i]§J and equation (43b) by
kﬁlzw , adding the two equations, and integrating the sum over the range
0<t <1 yield the result

ai + k12¢i ='Eﬂ (1=0,1,2,...) (4k)

my
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which takes into account the orthogonality relation (eq. (42)). The
generalized mass end generselized load appearing in equaetlion (44) are

m, = fol {[1 + g 5(§)] 3712 + kRIaq’ia} at

1
Py(r) = fo {[1 + o 8(8)] 7,7, + kmzwiﬂrs} at

respectively.

By & similar process the initial conditions (egs. (34)) become

g, (0) =-P—§;?(L9-)- (1=0,1,2, ...)

. . (15)
¢i(0) =~ éEO) (1 = 0, 1,2, ...)

It is shown in the appendix that the generalized masses my of the

glven free-free beam can be evaluated for i =1, 2, . . . as follows:
gy 2 [ox ¥ (1) Kok, (1=1,2,...) (ka)

The remaining generalized mess m, reduces, as in the elementery theory,
to

mo = (1 + Bo)Fo (46v)

since the symmetric rigid-body mode has no rotational component *O'
Further, the generalized force Pi(T) for 1=1,2, . . . may be

reduced, by & process of substitution from equations (38) and (40) and
integration by perts, to

1
P, () =i?i§ fo 7,0 de,ma (@=1,2...) (W)
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and the rigid-body generelized force P, 1s

1
Po(T) = T, fo 7 (k,7)at (70)

On the basis of the assumed form of the solution expressed 1n equa-
tions (35), the problem of determining y(&,7);¥(E,T) has been replaced
by a number of component problems requiring determination of the func-

tions if(T): i5(§:7)5W5(§:T), ¢i(T)’ and ?i(g)iwi(g)- The solutions
of these component problems must now be obtained.

For §.(7), integration of equation (36) in conjunction with equa-
tions (37) ylelds

_ _ 1 T nT pl _ 2
) = i /. fo fo (e ,m)ag (ar) (48)

For is(g,T);¢s(§,T), substituting ?f from equation (36) into equa-

tions (38) and integrating, in conjunction with the boundary conditions
(egs. (39)), gives

i pEopEopEopE L o pEopE -

Ys(ﬁﬁ)—fo fo fl fl a(e,m)(a8)" - xg fo fl a(e,m)(ae)” +
1 |, 2(? ) gt g3 ge) L

i+_fflc[ks <?-§ -(EE'?"'T \f; a(g,T)as - (49)

T) = L et S._L (gj_ﬁ .§_> Y
wem = [ [0 [0 aem@)’s S-S [, e

Since equations (44) and (45) are identical to equatlons (19) and (20) of
the elementary solution, the generalized coordinates @,;(T) are again

given by equation (26). The solution of equations (40) for the natural
modes y4(&);¥;(¢) is given in the appendix.

The solution just obtained and corresponding solutions for canti=-
lever snd simply supported beems are summarized in table II.
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TWO NUMERICAI. METHODS OF SOLUTION

Travelling-Wave Method

A traveling-wave method for calculating the response of a structure
to transient loads can be devised only if the motion of the structure is
governed by dlfferential equations of the hyperbolic type. The simplest
beem theory which completely fulfills this requirement is Timoshenko's
theory, which includes the effects of both transverse shear and rotary
inertia.

In developing a traveling-wave method of solution, it is convenient
to first replace the Timoshenko partiasl differentisl equations (egs. (27))
with the following four equivalent ordinary differential equations written
elong four charscteristic lines I+, I-, II+, and II- in the x,t plane:

Along I+ where gx—t = %: cil- M + mredQ - V dt = 0 (50a)
Along I- where % - -éL—l: % M - mr230 + V dt = 0 (50b)
Along II+ where % = c—12'= 515 dV - m dv + (mceﬂ + q)dt =0 (50¢)
Along II- where g—z- = 'El; ?15 av + m dv + <mc29 - q) dt = 0 (504)

The derivation of equetlions (50) is given in reference 6. The dependent
variesbles sre the moment M, the shear V, and the linear and angular

Ay oY EL AsC
velocities v = =~ and § = —. The quantities ¢, = and c, = B2
ot ot 4 1 mrz 2 n

are the propagation velocities of dlscontlinuities in moment and shear,
respectively (phase velocities of disturbances with infinitesimal wave
length). In each equation, the total differentials specify infinitesimsl
differences in the designated charascteristic direction.

For any glven beam, the slopes of the characteristic lines are known;
hence, closely spaced networks of characteristic lines msy be drawn in the
space-time plane. Various schemes for the approximate step-by-step inte-
gration of equations (50) over such networks are possible. 1In general,
2ll require some form of interpolation since Timoshenko's equations have
two characteristic nets. (The particular case where the two nets coincide,
¢y = Cp, has been treated in detail for uniform beems in ref. 6.) One
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integration scheme 1s brilefly described in this section. Attention is
restricted to a uniform beam for which the chaeracteristics are strailght
lines.

The beam is divided arbitrarily into segments Ax (see fig. 2), and

the time intervel is taken according to At = éErAx. This specifies a

lattice of points in the space-time plane at the intersection of the I+
and I- characteristic lines. Consider a general point 1 (fig. 2) from
which characteristics of both famillies have been drawn backwards in time.

The II+ and II- 1lines have steeper slopes (since ep < cl) and termi-

nate at points 2' and 4'. Then the differentials in equations (50) may be
replaced by the appropriate finite differences and the following equations
are obtained:

i - M) + mr®(2y - 95) - (v + V) = (512)
- 1) -2 - a) + 80 +v) = o (510)
_clg(vl - Vo) - m(vy - vp) +me, %t-(nl + 92.) + %‘@1 +am) =0 (5
2 - Vi) + by - ) +me B ) -l v ) -0 (Gw)

It 1s assumed that M, V, v, and Q are known at points 2, 3,
and 4. Parebolic interpolation formulss are substituted into eque-
tions (5le) and (51d) to glve the quantities at points 2' and 4' in terms
of thelr values at points 2, 3, and 4. Then equations (51) become four
equations for the four unknown quantities M,, Vi, v;, and & in

terms of ‘known values of M, V, v, and { at each of the lattice
points 2, 3, and 4. These may be solved to obtain a matrix recurrence
formula; however, a slmplification may be introduced based on the fact
that quantities at points 2 and 4 have already been determined to satisfy
the following equations:

cLl(Mz - M5> - m2(92 - 95) +é§(vg + v5) -0
(52)
oM - M) + mr®(@y - a5) - Gy, + v5) - 0
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Combining equations (52) with equations (51a) and (51b) leads to the
result

ey -5y -0y ) - 850 1) < o o2

where M has been eliminated. Now equations (51c), (51d), and (53) con-
stitute three equations for the three unknowns &, Vy, end vy in

terms of known values of @, V, and v at each of the points 2, 3, L,
and 5. Solution of these equations yields the recurrence formula

8, i, s & fis 4
_ _ _ ] _ 3,
T | = g ([B] | V2| + [ag] [F5) + [ Tl + [+ s + [q] : (5%)
V1 V2 V3 Vh 5 g,

= 0
where the quantities hsve been made dimensionless (n = SY- mzvﬁ%
- T

-__ay_ o
and v=§;—vl¢ﬁ_f and where
2 c c I
2 - c2° -2 x --2 K
( K2cl2) c1 cl‘kR—I
cnl c 2
Al =L -2+ 2Bk 2 .2 1
[2] = 3 (*clecl e 2 <2 gy
2
c2 - ca- 2
& kRIK<l + K2) kRI(l + K2) cl2(l + K )J
-K? g 0
. 2
(122 }l_¢ca 1 0
- (-2 5
| o 0 1+ K
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r —
(2-:{222) 2y Efr_c_

cl Cl Cl RI
2 2 )
a1 =4 -fo+ 32 )C2g e 2 21
SRS S
22k K(1 + K2) (1 + K2) °22(1 K2
“op R AC P )J
[ c
-1 -%K
_le2
[85] = |2 K>
0 0
0 -3 ok 0 R

[ - 0 ~Eiy e K 0 Barel X

kRIZ%K(l+K2) %kﬁlzz—ix(1+xz) <1-§§)§i-kmax(l+x2) %kMZ?IK(1+1@)

instead of kB.

K =

c2 At

nr 5

c
Note that the more appropriate parameter E% (:

) has been used here

The response of a beam may now be obtalned by the repeated applica-
tion of equation (54) except that, as is indicated in figure 2, special
formulas which take into account the particular boundary and initiasl con-
ditions of the problem, must be derived for boundary and initial points.
In addition, it must be remembered that the characteristic lines are pos-
sible loci of discontinuities in the dependent varlables or their deriva-
Such discontinuities will arise, for
example, if there are concentrated loads {or imposed velocities) that
have histories which are discontinuous or have dlscontlinuous derivatives.
Discontinuities in M or Q are propagated with veloclty ey (the

tives. (See, for example, ref. 6.)
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locus of such a discontinuity is shown by the dashed characteristic lines
in fig. 2); discontinuities in V and v propagate with velocity Co.

The magnitudes of discontinuities may be predetermined through the appli~
cation of equations (50) in a menner which is illustrated in reference 6.
Thus, in general, discontinulties may be added as they are encountered in
the step-by-step solution. In the scheme which led to equation (54), it
will be noted (fig. 2) that special consideration is necessary for points
Just above the locus of a discontinuity. Special formulas are certainly
required where there 1s a Jump in one of the functions and it mey be
desirable to account also for discontinuous first derivatives.

Once &, V, and ¥ have been determined st a point, M may be
obtained at that point by integrating equation (50a) or equation (50b)
along the proper characteristic from some boundsry where M 1s knowm.

It should be mentioned that the selection of the I+ and I~ lilnes
as the basic network is based on (rather intuitive) considerations of the
stability of the numericel procedure with regard to propagation of errors.
(See ref. 12.) It is assumed that the dommin of dependence imposed by &
numerical procedure should at least encompass the total theoretical
domain of dependence. This would not be the case 1f the steeper II+
and II~ characteristic lines were utllized as a hasic grid.

Houbolt's Method

A cantilever beam acted upon by a series of concentrated loads Py

Pos + Pp» 1s shown in the following sketch:

Pl Py P3 .« v . P,
4 v ¥ ¥ ¥
]
4
)
2 e
0123ll'n

Statlon

Such & besm has the deflection

|ve} = [¢]]e] (55)
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where the subscript c¢ i1s used here to indicate that the deflections
are cantllever deflections measured with respect to station O and where

[G] is a matrix of stiffness influence coefficlents. The inverse equation
is

|| = [G]'llycl (56)

The deflections of a free-free beam may be expressed in terms of the
cantilever influence coefficlents [@]. For the free-free beam the deflec-
tion is y = Yo + Y. where ypo 1s the deflection at station zero (the

center of the free-free beem); hence, equaetion (56) becomes

1
1

2| = [&] ™y ] - wolel ™ (57)

1
But, on the free-free beam, there is the additional load Pg- From the
condition of overall equilibrium, Po is given by

|

Dy = -z py = =11 ... 1]yl syolr ... y@ | 8)
i1

1

and equations (57) and (58) may be combined into a single matrix equa-
tion for the loads at stations 0 to n of & free-free beam. This
equation may be written

e = [Allyl (59)

where

a |b]

Al =
. |v|[al ™t
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o) = ~[@)™-

o] = -2 2.. .1 [G]'l

e=l11...1]el™-

and where the vectors |p| and |y | now contain PO and yo terms,
respectively.
Consider the motion of a free-free beam subjected to the appliled

distributed load q(x,t). The equivalent concentrated loads at the
stations 0, 1, . . . n are, at any time,

lp| = [W](lql - [m]I:'il) (60)

where [m] 1s the diagonal mass matrix, and [W] is the weighting metrix
(ref. 13): : L
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T 6 -1
2 20 2
2 20 2

[v] - &

2 20 2
2 20 2
-1 6 T

The essential feature of the Houbolt procedure (ref. 8) is the method of
expressing the second time derivative ¥. The acceleration at time
tJ = j At 1is written as follows:

Iylj = '&7(2[3’[3 - 5!3"3_1 + }'I'IYIJ_Q - Iylj—}) (61)

and 1is obtained by passing a third-degree curve through the points at
t = t,, tj-l’ tj-2’ and tj_5 at each station Xy. OSubstituting egqua-

tions (60) and (61) into equation (59) (written for time + = tj) and

AN

solving for Y3 leads to the recurrence equation

Iyl’J = [Bllaly + (;)2[0] (5 Iyly_q - Hlylyp + lylj_3) (62)
where
-1
5] - [[A] F—2 [ tmj] &
(at)

(c] = [(BI[m]
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Thus, the Houbolt method simulteneously determines all the deflections
y(xi,tj) (where 1 = 0, 1, . . . n) in terms of the deflections

y(xi’tj-l)’ y(xi’tj-2)’ and y(xi,tj_5). A concentrated load 2f(t)

at the center of the free-free beam may be included in equation (62) by
adding to the right-hand side the term

£ylal (63)

where

1

ol - [[A] ‘ —%[wJEmJ]_

(at)

- .0 0O M

0

The solution of & problem by repeated application of equation (62)
requires that the initial conditions of the problem at time t = 0O be
expressed in terms of fictitious ordinstes |y|_l,|y|_2 at times t_;

and t_p. This 1s accomplished by expressing the time derivatives I#IO
and [§|0 in terms of a third~degree curve passed through points at

t = tl, o, t_l, and 't_2 at every station. For the case where the

beam is Initially at rest and the applied loads increase continuously
from zero initisl values, the initial conditions

el 15l -6 ‘.
Il = 13l lylo (6k)

are converted by this process to

(65)

«
—
'_l
|
L
3
l—J

I
i
1
>
=
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Then, equation (62), applied for J = 1, ylelds

= [B]lal; [cﬂlyl

which may be solved for |y|l to obtain

- [EI] —7@]] lﬁﬂml (66)

(at)

The application of equation (62) for 3§ =2, 3, . . . 1is now straight-
forward. All that remalns 1s the determination of the cantilever influ-
ence coefficients [G].

In this connection 1t should be pointed out that, although no
restrictions have been made on the beam theory to be used, the aspplica-
tion of the method, as formulated, with Timoshenko's theory requires
that the deflectlons y be interpreted in a general sense and include
also the rotations of the cross sections V. Thus, with two quantities
to be determined at each station, the order of the matrices is 2n and
the required computational labor is roughly four times that required with
the use of the elementary beam theory. A compramlse which affords
increased accuracy over the elementary theory, yet avolds this large
increase in computational lebor, is the use of a theory which contalns
transverse shear freedom but no rotery lnertia. With no associated
inertia locading, the rotations V¥ need not be explicitly included in
the step-by-step dynamic analysis and do not asppear in the recurrence
formuls, equation (62). The cantilever influence coefficients sre deter-
mined as follows on the basis of this latter theory.

The influence function (Green's function) G(x;xl) is the sclution ¥y

of the equations
\

o BW oy _ -
x Bx *A G(@x W) =0

gx[Ase(-g-y; ] - =)

and the boundary condltions

[ (67)

/
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v,y D _
y(0) = ¥(0) =-a-xY(z) = &) - ¥(2) = 0 (68)

However, the deflection may be written as the sum of bending and shear

oy
contributions, y =yg +yg with V¥ = &-E-,-and i1t is expedient to write
for the influence function

G (k3% ) = Op(x3%7) + Gg(x5%p) (69)

where Gg and Gg are the solutions of the differentiasl equations
(equivalent to eqs. (67))

5—2 EI S—E GB = B(X-X])

g—x AG %; Gg = -5(x-x;)

/

and boundery conditions (equivalent to egs. (68))

-~

2 2
GB<O;xl) = %}G?(O;xl) = %{%‘i(l;xl) =5 ET :x—gB(Z;xl) =0
e (T

GS(O;xl) = ;a(l;xl) =0

J

For glven dlstributions of bending end shear stiffnesses, equations (70)
may be integrated directly in conjunction with the boundary conditions
(egs. (71)). For a uniform beam, the resulting total influence functions
are:

2 A
G(x;xl) = K]'—G- X + é(i—c?xl - xj) (x < xl)

- (712)
=—l-xl+i(§l—%—c--x}> (x>xl)

J
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In dimensionless terms, equations (72) msy be written

~

3 (ese, ) = k78 + 5§<§1 - %) (< £:)

2
2 £ 3
s o) (o)
J

and, for a uniform beam, the recurrence formuls, equation (62), becomes

> (73)

191y = Bl « LB - M3l + 191,,)

AT)

where

(ar)@

I -
L&l =L5.@-l}

8] - (1 + 25 o] 6

1
1
E=11... 1_J[§]'ls
1
1
1
151 = -[&™-
1
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(7 6 -1 ]
2 20 2
2 20 2
7] = 48
[W]—zu )
2 20 2
2 20 2
-1 6
L T

The elements 613 of the matrix of influence coeffilcients [éJ are seen
to be

- 2 2
Gyj = kg 1 Af + lg-(J - %)(Ag)3 (i < 3)

2 32 J 3
ko "d AL+ S (i - 3-)(A§) (1> 3)
where 1 designates the row and Jj, the column.
RESULTS AND DISCUSSION

Modal Solutions

For illustrative purposes, example computetions have been mede for
the case of a uniform free-free beam, for which Xkgpy = 0.1, ks = 0.2,

and ﬁc = 0. The beam is subjected to the applied concentrated load

a(e,7) = 2B(7)5(¢)

where ?%(T) has each of the time variations shown in figure 3. The
glven values of ERI- and k; are gppropriate to a beam having a solid
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rectangulaxr cross sectlon and a ratio of haif-length 1 1o depth equal
to 2.887. The calculated response has been limited to the history of
transverse shear at the point § = %u Moment calculations are omitted
because they do not provide as severe a test of the analytical methods.
The point E = % is chosen erbitrarily, since the location corresponding

to maximum transverse shear 1s not known in advance.

The responses to the step and ramp-platform loads were obtalned on
the besis of elementary theory from table I(a) and on the basis of
Timoshenko's theory from table II(a). In each case, six modes were used
in the expansions. The responses to the other three functions (figs. 3(c),
3(d), and 3(e)) were obtained by superposition of the step and ramp-
platform results. The resulting shear histories are shown in figures 4,

5, 6, T, and 8 up to a time corresponding approximately to the period of
the first natural mode of wvibration of the beam.

The long dashed curve in each figure 1s the static portion of the
response. Thus, the largest dynamic overshoot factor, achleved by the
step loading (fig. 4), is approximately 2.7.

It will be noted that the blast pulse load (fig. 3(e)) has only one-
half as much lmpulse as that contained in the square and triangular pulse
loads (figs. 3(c) and 3(d)). Hence, if the responses to the three pulse
loads (see figs. 6, T, and 8) are to be compared on the basis of equal
input impulse, the response to the blast pulse must be doubled. On this

bésis, the blast pulse is seen to cause the highest shear stress at § =

v 1o

An indication of the convergence of the modal results in figures b
to 8 1s provided by the bar graphs in figure 9. On each graph, the heights
of the bers correspond to the magnitude of the statlc portion of the
response (zero frequency) and to the amplitudes of the terms in the series
expension for the dynamic portion. (For each load, T 1is sufficlently
large so that the load function has attained its constant value.) The
bars, thus, represent the maximum possible contribution of each term to
the total. Note that, for the loads of long duration (the step and ramp-
platform functions), the static part and the first term contribute a pro-
portionately large share of the response and sufficient accuracy could be
obtalned with only three modes. On the other hand, the adverse effect of
reducing the load duration is 1llustrated by the bar graphs for the
responses to the three pulse loads. In each case, no convergence is appar-
ent for the first few modes end, in the cases of the square and blast
pulses, there is some doubt as to the adequacy of the even six modes,
particularly with the use of the elementery theory. :
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Further evidence of the effect of load duration on convergence and,
in addition, an indication of the effect of load distribution are given
by the following cases of the response of a uniform simply supported beam
to various loads:

Case (1): For a uniformly distributed step load q(&,7) = /(7),

«©

Z -:-1'-3- sin ixg cos 121t2";'2

- 2
M(g,T) ="%+'g" "

L
“3
i=1,3%,...

G.(E;T) = =§ +

o] o

- :_tl% Z -;-_LE cos 1ng cos .’Lzmtar2
i=1,3,...

Case (2): For a step load concentrated __a.t the center

ae,m) = 8 (e-2)1(n),

1-1
=z '
M(g,T) = -% - (E-%)_Z (§--]2—') - ﬂ% (-1) -il‘z- sin ixnt cos 12727
1=1,3,...
© i-1
2
T(e,T) = %— -J(ﬁ-%‘) - -1% z (-1) %cos int cos 1%0%;
1=1,3,...

Case (3): For a uniformly distributed impulse load q(&,r) = 8(7),

=

m(e,r) = = Sﬂ % sin ing sin 12427

1=1,3,...

E

o
G(g,'r) =k y cos ing sin 121:27
—
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Case (4): For an impulse load concentrated at the center
a(e,m) = 8(t-3)(n),

M(e,T) = 2 }: (-1)lzl sin ixg sin 1°x°T
1=1,3,...
. 11
¥(g,T) = 2x }; (-1) 2§ cos ixk sin 12t
1=1,3,...

These results are based on elementary beam theory. (The last two cases
are slmply time derivatlves of the first two cases.) The effect of load
duration is illustrated by comparing cases (1) and (3) (or cases (2)

and (4)). Changing from & load of infinite duration (the step load) to

a load of zeroc duration (the impulse) introduces a factor i2 and, hence,
reduces the rate of convergence (and, in fact, produces divergent series
in both case (3) and case (4)). Similarly, the effect of spatial dis-
tribution mey be seen by compsring cases (1) and (2) (or cases (3) and
(4)). Changing from a distributed to a concentrated load introduces a
factor 1 and hence reduces the rate of convergence. The spparent change
in the sign of half the terms is not significant since each series is
essentially an irregulaerly alternating serles (except at certain specific
combinations of & and T).

The Need for Timoshenko's Theory

The question of which theory should be used to determine the response
of a beam to & trensient load is intimately related to the convergence of
the result. This ls because the secondary effects of transverse shear and
rotary inertias become increasingly lmportant for the higher modes. Note
in figure 9, for example, the growlng disparity between the natural fre-
quencies of a uniform free-free beam celculated on the basis of the ele-
mentary and Timoshenko theories. Thus, if it is determined that, for a
glven beam subjected to a certain load, modes strongly affected by trans-
verse shear and rotary inertia contribute & large share of the response,
it is unlikely that elementary theory will yield correct results. In case
the glven beam is a complicated nonuniform structure, s rational procedure
for determining the proper theory would be to conslder a uniform spproxi-
mation to the given beam, qulckly obtain the response of the uniform beam
to the glven load by elementary theory (table I) and investigate the con-
vergence of the response, and at the same time to consider the influence
of rotary inertia and transverse shear on the modes (as manifested by the
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differences in netural frequencies obtained with the elementary and
Timoshenko theories).

This reasoning is generally, though not conclusively, confirmed by
the results in figures 4 to 9. Only the first mode of the free-free beam
shows good agreement between the frequencies as given by the elementary
and Timoshenko theories. (See fig. 9.) Thus, the responses to the step
and ramp-platform loads (fige. 4 and 5), which depend heavily on the
first mode and the static contribution, alsoc show good agreement between
the two theories. The responses to the pulse loeds (figs. 6, T, and 8),
obtained with the two different theorles, bear little or no resemblance
to each other since they depend heavily on the higher modes. However,
except for the response to the square pulse load (fig. 6), the two
theories do yileld sbout the same peak stress. (It is felt that the posi-
tive peak achieved in the first half period should be given more weight
than the negative peak achieved later, since the latter would be con-
siderably diminished by material damping which has not been included in
this analysis.)

Boundary conditlions also influence the need for a more refined
theory. For exsmple, although the elementary theory is adequate for
obtaining the shear due to & step load on the free-free beam of figure L4,
1t cannot be used to obtain the shear st the center of the same beam
where the input 1s a prescribed "step-velocity" of the point & = 0 (the
so-called problem of the "instantaneous arrest of the root of a moving
cantilever beam"). In the latter case, elementary theory ylelds a diver-
gent series (ref. 1lt), whereas Timoshenko's theory ylelds a modal solution
which converges to finite values (ref. 6).

Numerical Solutions

The two numerical procedures, the traveling-wave method and Houbolt's
method, have also been used to calculate the translent response of the
uniform free-free beam conslidered in the previous sections to an applied
ramp-platform load. In the calculations by both procedures, the beam was
divided into six segments (At = 0.1667). Results are shown in figure 5.

For the traveling-wave method, the time interval 1s

AT = kpp Ak = 0.01667

Relatively simple boundary formulas (based on linear interpolation) were
used in this case and discontinuitles 1n the derivatives of V and v,
arising from the discontinuities in the slope of the ramp-platform func-
tion, were ignored.
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In contrast with the traveling-wave method, the Houbolt method
imposes no inherent restriction on the selection of the time interval AT
in relation to the space interval Af. The time interval may be taken as
large as is consistent with the desired accuracy. This freedom has been
utilized in that the calculations by the Houbolt method have been made
with the time interval AT = 0.03333, which is twlce the time interval
used with the traveling-wave method. In addition, the computaetions by
the Houbolt method do not include the effects of rotary inertia and were
stopped at & point just beyond the peak load.

It will be noted that the numericael results in figure 5 approximate
the (essentially converged) Timoshenko modal solution fairly well. Both
numerical methods underestimate the peak stress, the traveling-wave method
by 14 percent and the Houbolt method by 9 percent.

The greater accuracy of the Houbolt result is particularly significant
since it was obtalned with less computational labor due to the use of the
larger time intervel. It must be kept in mind, however, that economical
use of the Houbolt method requires that it be applied in comnection with
the elementary theory or with the addition of transverse shear alone. IT
both rotery lnertia and transverse shear must be included, the labor
required in applying the Houbolt method is quadrupled. Fortunately,
rotary inertia is negligible in many problems. (See, for example, ref. 15.)

It should be mentioned that the traveling-wave procedure, as so far
concelved, has proved scmewhat sensitive to minor changes in the scheme
used to obtain recurrence formulas. (Only one scheme, the most success-
ful so far found, has been described in this report.) A possible reason
for this stems from the fact that the slope of the basic network of char-
acteristic lines is dependent on rotary inertia. In fact, rotary inertia
is necessery to give the beam equations the wave character essential in
the conception of a traveling-wave method. Thus, in view of the relative
negligibility of rotary inertia for many practical problems, this sensi-
tivity 1s perhaps not surprising. In general, it must be concluded that
a traveling-wave numerical method of analysis which is superior to the
Houbolt method has not yet been devised.

Numerical results have also been obtalned for the response to the
triangular pulse load by superposition of the remp-platform results.
These results are shown in figure 7. The results indicate that more
degrees of freedom must be taken with both procedures to predict ade-
quately the response of the beam to the given trlangulsr pulse load, and
from this example 1t appears that the modal method of solution is to be
preferred. However, the simple problems discussed herein do not portray
the mein advantages of numerical methods. For example, numericel methods
are readily extended to apply to nonuniform beams and convenlently adepted
to the use of modern high-speed computers. A fundamentsl cheracteristic
of numericel methods is the replacement of professional engineering time
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by routine computing time. Hence, numerical procedures are not to be
condemned on the basis of the results in figure 7. The selection of
the best method requires the consideration of all these factors in rela-
tion to the specific problem.

COKCLUDING REMARKS

Williame type modal solutions, based on both the elementary and
Timoshenko beam theories, have been given for the response of several
uniform beams to a genersl transient load. The response to any specific
load mey be obtained from these solutions by performing a serles of indi-
cated direct integrations of the load function. Typlcel computed results
have been shown for the shear response of a free-free beem to various
concentrated loads.

The convergence of modal solutions is shown to depend both on the
history and distribution of the load. Decreasing elther the duration
of the loading or the reglon over which the loaed is applied reduces the
rate of convergence and masy produce divergence.

The need for. s more refined theory, as compared toc elementary theory,
is intimstely related to the rate of convergence of the modal solution.
If modes which are strongly dependent on transverse shear and rotary
inertia contribute a large portion of the response, Timoshenko's theory
mist be used.

Comparison of the Houbolt and traveling-wave numericel methods indi-
cates that the Houbolt procedure has many advantages over the traveling-
wave procedure as 80 far concelved.

langley Aeronautical Isboratory,
National Advisory Committee for Aeronsutics,
lengley Field, Va., February 5, 1958.
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APPENDIX

SYMMETRICAL NATURAL VIBRATION OF A UNIFORM FREE-FREE

TIMOSHENKO BEAM WITH A CONCENTRATED MASS

Natural Modes and Frequencies
The differential equations and boundery conditions governing sym-

metrical natural vibration of a free-free beam with a concentrated mass
at its center may be written in the following dimensionless forms:

1 1 (= 2 =
¥+ E;g(y - ¥) + Kk ER12¢ =0

(A1)
LF -9 +xF -0
kS
v(0) =0 (A22)
¥ (1) =0 (A2b)
F(1) - ¥(1) =0 (A2¢c)
iﬁ F'(0) + B k55(0) = 0 (A2q)

where F(&);¥(&) is the natural mode and k 1is proportional to the
circular frequency of vibration. Each of the solutions of equations (Al)
has the form

- A
y(&) = Ae .

¥(£) = BeMt

where A and B are arbitrary constants. Substituting this form into
equations (Al) leads to the biquadratic equation
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y , .2f 2 2\, 2 2( 2, 2 2 _
7\+k(ks +kRI)7\ + kT\kk “kp© - 1) = O (A3)
and to the following reletionship between A and B:

2. .2 2
B=7‘—+T131‘8—A (Ak)

Equation (A3) has the four solutions A = %o and A = +ip where
A

o = kv:é-lz-(ksz-+ kRIZ) N \ka _ %2)2 . fe‘]
S N

The general solution of equations (Al) may be written in the form

> (A5)

w»
il

-~

§(¢) = C; cosh at + Cy sinh af + Cs cos Bt + Cy sin BE
2 . 12 2

¥(g) = 2 —= (02 cosh af + C; sinh or,§> + T (A6)
2 _ 12, 2
B Kk (Cl,. cos B¢ - Cz sin B_E,)

.J

where C,, Co, 03, and Cj are arbitrary functions of k which must
be determined in order to satlsfy the boundary conditions (egs. (A2)).

Substituting equations (A6) into equations (A2) ylelds four homo-
geneous algebraic equations for C;, Cop, 03, and Cy. The existence

of nontriviael solutions of these equatlons requires the vanishing of the
determinant of coefficlents. This criterion yilelds the frequency equation

F(k)E%‘-ysinBcoshco+ cos B sinh o +

2 2, 2
o Ob(C‘: + k7Kg )[2+(9_g)sinﬁ sinha,+(7+l)cos B cosh or]=0

T 2, 8 B 7
(AT)
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where
@ + K2k 2
7 I vt ——
B2 _ k2k32
T™he solutions of equation (A7) are the natural frequencies of vibra-
tion k;, where 1 =0,1,2, . .. . For k= ki, the homogeneous
algebraic equations may be solved for the relative magnitudes of the
quantities Cy, Cp, C3, and Cy. For 1 =1,2, .. ., the resulting
vibretion mode shapes may be written in the form 7
-, sin B sinh
yi(g) = ¢ {—-L cosh ay k- —_a,-ﬂ cos Byt -
i 1
. B 12 B k12k52
m, = 5 (cosh ay + 73 cos Bi) cos f4& - cosh ay g +
@ * By
in B,k - =+ L 51 1=1,2, ...
A-i(s Bi§ Bj_ 71 sinh a’ig)] ( )y & )

 (A8)

> o
-k 1
wlr1(§)=cBi Biakﬂ P, 5in Py
1

sinh af + o L gin g -
a 1y cy 1

2
- Bia - k 2
m 1 ];B (cosh @; + 7y cos B:L) Ai (cos sig - cosh or,ig) -

0612"‘!31
sin5g+E-1- sinh a, ¢ i=1, 2 )
i @171 4 (— ) E L
-
where
Bi
sinBi-qsinha.i
B 1
cos By + = cosh ag
73

The rigid body mode, corresponding to kg = O, has the components §O(§) =C
- and llro(g) = 0.
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Orthogonality of the Natural Modes

The differential equations (Al) are satisfied by asny of the infinite
number of natural modes and corresponding frequencles. Thus, for the
ith mode,

I 2. 2, _
Vi +E§(Yi"”1)+k1k31‘l’i—°

1 (= ' T

kz(yi' '*i) + %5 = 0
8

Let the flrst of these equations be multiplled by the rotational com-

ponent Wd of the Jth mode and the second by the translational com-

ponent ij. If the resulting equations are added and Integrated over

the beam length, there results
1 1
2 - 1 [ '
k g = = —_— ' - ag -
1 fo (7553 + rar¥yey)es fo ksz(yi VR

1 1 1 (
v, " dt-f—:?'-\lr\lfdi
\_/’\0 i7" Oksei 1)3

Integrating by parts the first two integrals on the right-hand side of
the preceding equation ylelds:

kiz f(‘)l (5}1373 + kﬁl%ivd)dﬁ = -[ié(ffi' - \Ifi):?j + vi'vj}z +
1
fo E;L—z(s‘ri' - )7y - ¥y)as +

1
¥t as (9)
Jo W

This process is valid also if the roles of the 1th and jth modes are
reversed. Interchanging 1 and J in equation (A9) and subtracting
the result from equation (A9) leads to '
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(2 - %) fo * (7,7 + gy Va¥y)at = -[Elfg-(ii' - %), -Ei—g(irj' - ¥y +

1
¥i'¥y - WJ'W%]O (A10)

If now the boundary conditions (eqs. (A2)) are imposed, equation (A10)
is found to reduce to

(k, - kf) fo * (F:7; + kRIE\vivj)dg - (&2 - kf)ic F;(0) 75(0)

or
1 . - - 2
fo {[1 + By 8(8)]F1(8) F4(8) + kgr ¥i(6) ¥y(e)} ag = 0 (3 # 1)
(a11)
since

1
fo Bie 8(8) F1(€) F5(8) & = &, 7,(0) F4(0)

Equation (Al1l) is the orthogonality condition satisfied by the natural
vibration modes of a unlform free-free Timoshenko beam with a concentrsted
mass at the center.

Determinstion of the Generalized Mass

The determinstion of the generalized mass

1
m, = fo {[1 + By 8(e)]747(8) + kgp© vf(g)} at

by direct integration is = somewhet laborious process for i # 0. Fortu-
nately, my can be expressed in terms of certain boundary values of the
mode shapes by the application of a limiting process to equation (AlO) in
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which the functions 71 and vi are consldered as continuous functions
of k. Thus, if

ky = ky + dk
and
Y. =¥y + &y = + e dk
Yy =Y+ &y =7y ak
Y
= ay = — dk
¥y =¥y +d¥ = ¥; + Sk

equation (Al0) becomes, in the limit as dk approaches zero,

;.2 - dy 1 (3 5OV -
fo [yi " \yi * (ak)k—ki E(&' vo a_k)k=ki it
1
( )k—ki (‘?,; "") k=kJ (1=1,2,...)
0
(Al12)

This equation is applicable to uniform beams and may be extended, if
desired, to nonuniform beams. On substitution of the boundary conditions
(egs. (A2)), equation (Al2) reduces to

1
fo [3-’12 * lezwie]dg - - 8, §,°00) -

Wi(l)[ my'(l)]k:ki (1=1,2,...)

Hence, the generallzed mass is given by

ey v _
T A (1)]k=ki (1=1,2, ...  (a3)
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Note that only the second boundary condition (eq. (AZb)) is altered
by differentiation with respect to k. This arises from the fact that
only this boundery condition depends for its satisfactlion on the frequency
equation (AT); that 1s, the mode shapes (egs. (A8)) satisfy the other
boundary condltions for any value of k but satisfy equation (A2b) only
for k = ky slnce

¥(1) = 0(132 - keksz)F(k)

where F(k) is defined by equation (A7). It is only by virtue of this
dependence of one or more boundary conditions on the frequency egquation
thet equations (Al2) yleld a value of mij. Hence, it must be concluded

that, for a beam for which none of the boundary conditions depend for
their satisfaction on the frequency equation (as, for example, a simply
supported beam), equations (Al2) are not applicable. For such a beam,
mi is determined by direct integration.
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TABIE I.- RESPONSE OF A UNIPCRM ELEMENTARY BEAM TO A GENERAL LOAD

(a) Symmetrical free-free beam with a concentrated mass

Quantity Analytical expression
Fe,m F(7) * 7 0e,m) + i A0S h
10
i(l,‘l’) ig(glf) + z “1(7) ii(‘)
i
e, T+ ) 400 T @
ied
Py (T) T
ga(v) -§1—+ :14- fo 2,(8) ain ky(r - 6)do
1 1.
E"; _[; a(e,m)Fs(e) e (1=2,2,...)
() l . -
Yo fo Fale,m)ae (1 =0)
Mo 520+ 520 -1z, )
™ (& + 878 (z ~0)
- T nT Ll _ e
Fo(7) :Th': fc fo fo (e, m)ag(ar)
) Eopk el ol B4 [ 3 2) 1
Faltm) L L aenen’ - 2 50(5‘ B e
- E ot e 1 f2 1
y(e,m) 'f; f; a(e,man +1__+ic(‘?'“ ) fo. dte,mas
- £ N z_
AR - fl e s ot - 1) [ ana
C[aouh Vk—i cos ﬁg + cos E cosh ﬁ; -
¥i(8)
i =\ fain fire - sinh figk  cosh fiesk - cos gk
Tﬁ(‘in Jk_l+ sish ﬁ)(e“ fieg + ooen qq)(un & + ston g * cos kg + cosh fq)]
-Ck.,_’r-oaahﬁcoa ficgk + cos iy cosh [R5k +
ﬁi(l) = . {sin Eg + sinh @ cos ﬁﬁ + cosh ﬁ;\-
in sinh s ecosh -
2 fix(otn fir + {57 (cos {7 + ﬁ)\’m Frv v o oot fi ¢ somn iz )
3/2 o .
-Cky’ [ccnhﬁsin it + cos iy einh (it +
c'i(i)

& w8 cos E; + cos \feos st + cosh iy +3 it - 'w-
%ﬁémﬁ thﬁ)( ﬁ hﬁ/\sinv]?f_+am: {k_::g cos {ky + cosh {k__'_/_

Frequency equation:

aos kuinhE+siﬁ'ﬂmﬂ+iaﬂ(l+mﬂmhﬁ)-0
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TABIE I.- RESPONSE (F A UNIFORM ELEMENTARY BEAM TO A GENERAY. LOAD - Continued

(b) Centilever beam

51

Quentity Analyticel expression
s, ) ACUEBWACEAO
i=1
(e, ) (6 + ) 4y(n) By(e)
1=1 '
f‘(g,-r) is(gfr) + Z ¢1(T) f’i(g)
Tml
Py (7) T
¢,.(7) -iT + % o P;(8) sin k, (v - 8)as
2, () Lot §
A =2 Jo ale,m) ¥;(5) ag
1
-] _l=z=2
m fo 7. 2(at = £ 7,2(2)
- £ pE nE nE _ %
Fale,m) I j; L fl a(s,7) (a8)
- £ RE
_ = 2
#y(g,) »/‘1 fl ate,m) (ag)
= 13
A - als
s(&,7) fl a(e,m)as
37'1(5) c sin ﬁg - ginh v’k_lg . cosh {kit - cos figk
sinﬁ+sinhfx_i cos j_+cosh{k_i
ﬁi(ﬁ) Cki sin ﬁg + sinh fk_ig _ cos {k_ig + cosh '!k—ig
sin \i; + sinh iy cos ks + cosh iy
6,1(&) ij_3/2 cos Jk_._‘_g + cosh Vk_ig * sin \fk_ig - sinh'ﬁg\
sinﬁ_-i-sinhﬁ cos i+cosh{k—i/
Frequency equation:
1l + cos Ecosh E:O




TABLE I.- RESPONSE (F A URIFORM ELEWMENTARY BEAM TO A GENERAL LOAD - Concluded

(c) Simply supported beam

Quantity Aralytical expression
#E,T) 7,61 + Z #;(7) sin ixt
i=1
K(E,T) ﬂB(E.,T) + Z 12:(2531(1') Bin ing
1=)
¥e,r) ¥ (em) + z 1513951(7) cos Ixt
1=1
B (1) -28, (1) + 2152 Jn-r P,(0) sin 1%%(r - 6)a0
0
2, () 1 fl'(;)muu;
T 5T) B
t oF Jo *
: £ & 1 - b 1 £ 14 £ - I 3 o) 1 § - 2
ACES LR L asnent-e [0 [0 [ awnen*« 30 - ) [ [ atnoe
,(5,7) st s [T geme”
B s Jo Jo Jo Jo
' 1 p8
9, (e,7) - fo ale,mat + fo j; ate,m)ap)”

2¢

hhgh NI VOVN
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TABLE IT.- RBSPONSE OF A INIPORM TIMOSEENKD BEAM TO A GENERAL LOAD
(a) Symmetrical free-frees besm vith a concentrated mess
Quantity Analytical expression
§e,m) R + Tl ¢ ) () F(0)
1e0
¥(e,m) 1ole,m) + Z #.07) ¥, (8)
1=l
(g, 7) X R W ACEAC)
i=l
#(e,m) T+ Z I AORAG
11 '
SRy Pt -
gy i} e j; ?4(8) sin k,(r - 8)as
1
k—llg J; A Ty (=12 ...)
Pj_("-') 1
% j; FLmat  (1=0)
-2 ¥ (& v () (1=1,2,...
. % 1 [Bl ]b-k_,_
(1 +8)52 (1=0)
I
7.() g [ [ wnaen?
. Eptopbopk_ v 2 pbpE 2 1[22 (5;5?)] ‘3
Fu(6m) L0 L[ semen® -2 [ ateman e @-)-(g-2.8 [, @ema
E b ot 3 2 1 '
. e B E A
() B L L ey - - s [, &uma
_ £ nE 2 1
(87 - fl L q(:,f)(d=)2+1:;c(§;- t +%) j; e,mar
- £ 1,
Foltsm) - [ aemee s gt - [ ik
c{ggi_umﬁg L
¥yl 2 2
= \Bg™ - kiak,, ot
5, SWZ(mgn @ + 74 coa 51) [eoc Byt - cosh oyl + A,_(nin Bt - 5 ;;.. sinh aig)]}
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TABLE II.-~ RESPONSE (F A UNIFORM TIMOSHENKO BEAM TO A (GENERAL LOAD -~ Continued

(s) Symmetrical free-free beam with a concentTated mess - Concluded

Quantity Analytical expression

3
0(21_2‘.%:1_“53){71 gii -'%1—91 sioh gl + %& sin By -

¥ (2) T -
2 2
&, SEX@.,_;—]-:‘;:%;)(M}‘ ay + 7y cos p._'_)[l\i(su Byt - cont: a.lg) - (pin Byt + % 7, einh u.il)]]
-C(ﬂig - ki2k-2) {71 EEZEL cosh q_’.g + i:;ﬁ_w pig + )
iy (s) _

2 2
i, QJCH;_:’%E%(M ay + 7y cos n,)[zxi<sin Pyt + %-; sioh q;) + (aos Byt + 7y cosh a.ig)]}

Eﬁ(_ﬂ‘mai sinh ay _
SR TR Rt R

A
- - (B42 - 2 3 B,
n, 5, 512 (.:oah ay + 74 co8 pi)[Ai(eoa ﬁig + 73 cosh “1;) - (nin Byt ~ ZL ginn a.ll):l}

sin By - Inh
A 810 py - & stmh oy

cos ﬂ1+;‘;eoshc¢

LLR ;‘LZ'*LZ"-;
A - k7,

o 5 \I%[-(kf + ) + m:l
& kiJé[(kf rer) m

Frequency equation:

- afaf + 2
%7sinﬂcoshu.+cosﬁsinha+mc—£—u'2:%-)2+(%-g)linpsinhd-+(7+%)co.Bcolha. =0
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TABLE II.- RESPORSE OF A UAIFCRN TIMOGHENKD BEAM T0 A GENERAL IOAD - Contimmed

(v) Cantilever beam

Quantity Analyticel exyression

) F,(e7) + i g () F4(8)
i=1

¥(t,7) walt,T) + z AAG
im)

Ak,1) By(e,r) + i $5(r) K (1}
4l

L (%)) Y (b7 + i di (r) ¥,(8)
i=31

#(7) -Eéi(ﬂ+:—-': f: Py (@) adn k(7 - 8)a8

7y (r) &, " 30,0 70 &

x j;lﬁ{"(l) +xr® 0] et -5 n(l)PE Nl)]x-k,
54087 A ‘];' L et -2 [ ! A * 3 an?
ali,7) j:_/:j: e (as)®
R (s, 7 -‘f:f: e, (a2
AR -f: HFL L
0] c[m Byt - cosh oy + Ai(m Byt - g-i- sinh H;)]
¥1(t) c gﬁ_-B_ik_zE_k.fE’(m Bs% - cosh u-_li) - (ﬂn Bt + 5‘} 7y sich a._“)]
() °(’s2 - kza"-a)l}:.("-“ Byt + E_‘ sinh “1‘) + (°°‘ Pi¥ + 74 cosh "15]
F’_(;) [ EEE\’-(M Byt + ‘/JI oosh c_,_;) - (lin Byt - % ainh u.l;)]

_lin g - EM' sinh af
= cos By + 7—];- cosh oy
’ 22 + k2
* 82 - kié;:z
o nfé[—(-f s + fo? - ) v o
» kqé[(kf + i) + fi® - xar) ;:i]
Frequency equation:
g+(§-§)ampu.nna+ (7+-})=n-pooahm-0
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TABLE II.- RESPONSE OF A UNIFORM TIMOSHENKO BEAM TO A OENERAL IOAD -~ Concluded

(o} Simply supported beam

Quentity Analytical expression
¥, Folt,m) + z {[¢1(T)]k1 + [¢’-(T)Jk_'_-b }sin 1xE
1=} .

v(,r) ¥ (8,7) + {1 - 2’2 [#,_('r)] + G. - —!;g[ﬁi(-r)] }coa ixt
" - 22 kR .

(t,7) Bo(e,m) + z 1% 41 - a‘ Eti('r)] {2 - E:E;é‘ [¢1(T)}k1-b,_ ain ixf

1=l
We,m) Tyltm) « z ﬁ[ S, bf[mv))li_bi}m xt
i=1
Fil7) - EILEI)- + :—t j: Pi(” sin k(v - 0)a8
1 - .

Py(v) ii'i j; A7) ein dxg af

n %[1 + 12x‘°-kmz(1 - k—:m_zkiz)j

L‘L‘j:f: et - 5,2 f:‘];! e, (e - g f:j:f:f: ek -
[‘;- (k.2+§)e] j;lj;’ ate,m) (a)®

f.(!:T)

nltm) S wemas - [P st - (E-3) [0 11 seme?

¢ nt 1 nt
2,0,m) - fo j; q(;.r)(_anau fo fo s, (an)®

t 1 At
(8,7 - j; i ma + fo j; e, a)?

Fraquency equations:

ki =a; or by whers
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Elementary theory Timoshenko theory

SITIRITIT

M
M, V M+dxdx

aVv
!< dx ql v+ ox dx

Figure l.- Positive distortions and positive internal forces and moments
assoclated with a typical beam element.
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X

Figure 2.- Grid scheme for traveling-wave numerical procedure.
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Figure 3.- Some fundamental load histories.
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